Cancer Genes and Genomics Osteopontin-c Splicing Isoform Contributes to Ovarian Cancer Progression

نویسندگان

  • Tatiana M. Tilli
  • Vanessa Ferreira Franco
  • Bruno Kaufmann Robbs
  • Luiz Mendes Wanderley
  • Fabrício Ribeiro de Azevedo
  • P. B. Viola
  • Georg F. Weber
  • Etel R. Gimba
چکیده

Ovarian carcinoma is one of the most aggressive gynecological diseases and generally diagnosed at advanced stages. Osteopontin (OPN) is one of the proteins overexpressed in ovarian cancer and is involved in tumorigenesis and metastasis. Alternative splicing of OPN leads to 3 isoforms, OPNa, OPNb, and OPNc. However, the expression pattern and the roles of each of these isoforms have not been previously characterized in ovarian cancer. Herein, we have evaluated the expression profiling of OPN isoforms in ovarian tumor and nontumor samples and their putative roles in ovarian cancer biology using in vitro and in vivo functional assays. OPNa and OPNb were expressed both in tumor and nontumor ovarian samples, whereas OPNc was specifically expressed in ovarian tumor samples. The isoform OPNc significantly activated OvCar-3 cell proliferation, migration, invasion, anchorage-independent growth and tumor formation in vivo. Additionally, we have also shown that some of the OPNc-dependent protumorigenic roles are mediated by PI3K/Akt signaling pathway. OPNc stimulated immortalized ovarian epithelial IOSE cell proliferation, indicating a role for this isoform in ovarian cancer tumorigenesis. Functional assays using OPNc conditioned medium and an anti-OPNc antibody have shown that most cellular effects observed herein were promoted by the secreted OPNc. According to our data, OPNc-specific expression in ovarian tumor samples and its role on favoring different aspects of ovarian cancer progression suggest that secreted OPNc contributes to the physiopathology of ovarian cancer progression and tumorigenesis. Altogether, the data open possibilities of new therapeutic approaches for ovarian cancer that selectively down regulate OPNc, altering its properties favoring ovarian tumor progression. Mol Cancer Res; 9(3); 1–14. 2011

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteopontin-c splicing isoform contributes to ovarian cancer progression.

Ovarian carcinoma is one of the most aggressive gynecological diseases and generally diagnosed at advanced stages. Osteopontin (OPN) is one of the proteins overexpressed in ovarian cancer and is involved in tumorigenesis and metastasis. Alternative splicing of OPN leads to 3 isoforms, OPNa, OPNb, and OPNc. However, the expression pattern and the roles of each of these isoforms have not been pre...

متن کامل

The role of osteopontin in tumor progression and metastasis in breast cancer.

The use of cancer biomarkers to anticipate the outlines of disease has been an emerging issue, especially as cancer treatment has made such positive steps in the last few years. Progress in the development of consistent malignancy markers is imminent because advances in genomics and bioinformatics have allowed the examination of immense amounts of data. Osteopontin is a phosphorylated glycoprot...

متن کامل

Expression profile of ZFX isoform3/variant 5 in gastric cancer tissues and its association with tumor size

Objective(s):Previous studies demonstrate that changes in pre-mRNA splicing play a significant role in human disease development. Furthermore, many cancer-associated genes are regulated by alternative splicing. There are mounting evidences that splice variants which express predominantly in tumors, have clear diagnostic value and may provide potential drug targets. Located on the X chromosome, ...

متن کامل

Role of Aberrant Alternative Splicing in Cancer

Alternative splicing can alter genome sequence and as a consequence, many genes change to oncogenes. This event can also affect protein function and diversity. The growing number of study elucidate the pathological influence of impaired alternative splicing events on numerous disease including cancer. Here, we would like to highlight the significant role of alternative splicing in cancer biolog...

متن کامل

Alternative Splicing and Tumor Progression

Alternative splicing is a key molecular mechanism for increasing the functional diversity of the eukaryotic proteomes. A large body of experimental data implicates aberrant splicing in various human diseases, including cancer. Both mutations in cis-acting splicing elements and alterations in the expression and/or activity of splicing regulatory factors drastically affect the splicing profile of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011